Given the robust nature of learning sciences research, this website is best viewed on tablets and computers. A small screen experience is coming in the future.
On June 22, 2021, we will launch updated strategies for the Math PK-2 model, as well as additional updates to the Navigator that highlight equity, SEL, and culturally responsive teaching. To learn more, visit our Site Updates (available in the "About" menu at the top of any page).
Hover to see how factors connect to Spatial Skills. Then click connected factors to explore strategies related to multiple factors.
We use our Spatial Skills to mentally manipulate objects and numbers. These skills are foundational in the development of Number Sense and Geometric Reasoning and allow for later math learning, as visualizing and mentally manipulating numbers and representations in space can be an effective way to solve math problems.
There are three main Spatial Skills:
Individuals differ in Spatial Skills. For example, boys often outperform girls in tasks of mental rotation, one component of Spatial Skills. This gender gap is small in early childhood but grows larger throughout development into adolescence. Importantly, Spatial Skills are malleable, and both boys and girls show substantial improvements with Spatial Skills training.
CRA is a sequential instructional approach during which students move from working with concrete materials to creating representational drawings to using abstract symbols.
Continual use of foundational skills with different problems reinforces a conceptual understanding of math skills.
Daily review strengthens previous learning and can lead to fluent recall.
Thinking of and about patterns encourages learners to look for and understand the rules and relationships that are critical components of mathematical reasoning.
As students walk through stations working in small groups, the social and physical nature of the learning supports deeper understanding.
Adding motions to complement learning activates more cognitive processes for recall and understanding.
In guided inquiry, teachers help students use their own language for constructing knowledge by active listening and questioning.
Spending time with new content helps move concepts and ideas into Long-term Memory.
Practicing until achieving several error-free attempts is critical for retention.
Math centers with math games, manipulatives, and activities support learner interests and promote the development of more complex math skills and social interactions.
Math games allow students to practice many math skills in a fun, applied context.
Providing physical and virtual representations of numbers and math concepts helps activate mental processes.
Visual representations help students understand what a number represents as well as recognize relationships between numbers.
Connecting information to music and dance can support Short-term and Long-term Memory by engaging auditory processes, Emotions, and physical activity.
When teachers connect math to the students' world, students see how math is relevant and applicable to their daily lives.
Math games and manipulatives for vision differences support math development for learners with visual needs.
Children's literature can be a welcoming way to help students learn math vocabulary and concepts.
Spaces that are structured, organized, and clean provide increased room for collaboration and active learning.
Providing visuals to introduce, support, or review instruction activates more cognitive processes to support learning.
Are you sure you want to delete this Workspace?
Enter the email address of the person you want to share with. This person will be granted access to this workspace and will be able to view and edit it.
Adjust the permissions of your Workspace.
This Workspace is .
This Workspace's Reflection Area is .
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner.
It disrupts the notion of a one-size-fits all education. Understanding learner variability helps educators embrace both students’ struggles and strengths as we connect practice to uplifting the whole learner.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
Use the Learner Centered Design Tool to build a workspace. Go to Learner Centered Design Tool.
Or, create a new blank workspace for your product or project.
Use one of the guided tools to build a workspace.
Or, create a new blank workspace for your product or project.
Make a copy of this workspace.
Redirecting soon...
Generating summary page
Loading...
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Summary" to view your Design Summary Report.
On this page, using your heatmap, you will be asked to select factors to further explore, and then select new strategies you might incorporate into upcoming instruction. Once done, click “Show Report” to view your Design Summary Report.
By selecting "Show Report" you will be taken to the Assessment Summary Page. Once created, you will not be able to edit your report. If you select cancel below, you can continue to edit your factor and strategy selections.
Announcement here
Item successfully added to workspace!
Issue adding item to workspace. Please refresh the page and try again.
Learner variability is the recognition that each learner is a unique constellation of strengths and challenges that are interconnected across the whole child. Understanding these connections and how they vary according to context is essential for meeting the needs of each learner. It embraces both students’ struggles and strengths. It considers the whole child.
Throughout the site, we talk about "factors" and "strategies." Factors are concepts research suggests have an impact on how people learn. Strategies are the approaches to teaching and learning that can be used to support people in how they learn best.
The Learner Variability Navigator is a free, online tool that translates the science of learner variability into factor maps and strategies that highlight connections across the whole learner. This puts the science of learning at teachers' fingertips, empowering them to understand their own practice and support each learner.