Given the robust nature of learning sciences research, this website is best viewed on tablets and computers. A small screen experience is coming in the future.

Hover to see how factors connect to Long-term Memory. Then click connected factors to explore strategies related to multiple factors.

Long-term Memory can store information indefinitely. We can move skills and knowledge into Long-term Memory by repeatedly practicing. When students have math skills, background knowledge, and arithmetic facts in their Long-term Memory, they have the tools they need to tackle new math problems.

When short-term memories are rehearsed, they become consolidated and move to Long-term Memory. There are two main types of Long-term Memory:

**Explicit (Declarative) Long-term Memory** refers to memories that can be consciously remembered.

**Episodic memory**is for the storage of daily personal experiences and specific events in time, such as who we sat behind in class yesterday. Episodic memory of learning experiences can help students recall the knowledge learned in that particular context or setting.**Semantic memory**is for memories of facts, such as memorized arithmetic facts (e.g., 2+2 = 4), and general knowledge about the world, such as Tokyo is in Japan. The time and place this knowledge was learned is not typically known.

**Implicit (Nondeclarative) Long-term Memory** stores the memories that do not require conscious thought.

**Procedural memory**involves learning a sequence of actions, such as riding a bike and doing math Operations. These are automatically retrieved and used for doing these tasks.**Emotional memory**involves a change in how stimuli are approached based on a past negative or positive experience, such as someone avoiding food that previously made them ill.

**Schemas** exist in Long-term Memory as an organizational system for our current knowledge and provide a framework for adding future understanding. New information that comes into our Long-term Memory may be more readily encoded in memory when it is consistent with a current schema making learning easier when we have the appropriate Background Knowledge as context.

- Cognition & Memory: Topic that includes cognitive science theories about how the brain processes information on Digital Promise's Research Map
- Organizing Information to Improve Memory Retention: Module by Sanford Inspire
- Prospective Memory: Subtopic that includes research on the different ways the brain creates prospective memories on Digital Promise's Research Map
- Retrieval Practice: Subtopic that includes research on how people retrieve information from memory on Digital Promise's Research Map

Providing math tasks with high cognitive demand conveys high expectations for all students by challenging them to engage in higher-order thinking.

As students solve problems in a group, they learn new strategies and practice communicating their mathematical thinking.

CRA is a sequential instructional approach during which students move from working with concrete materials to creating representational drawings to using abstract symbols.

Students activate more cognitive processes by exploring and representing their understandings in visual form.

Continual use of foundational skills with different problems reinforces a conceptual understanding of math skills.

10 minutes in each math session devoted to building fluent retrieval of basic arithmetic facts sets the foundation for learning new concepts.

Daily review strengthens previous learning and can lead to fluent recall.

Knowing the language of math is critical because students must use this language to understand math concepts and determine calculations needed.

Thinking of and about patterns encourages learners to look for and understand the rules and relationships that are critical components of mathematical reasoning.

Teaching students to recognize common problem structures helps them transfer solution methods from familiar to unfamiliar problems.

Discussing strategies for solving mathematics problems after initially letting students attempt to problem solve on their own helps them understand how to organize their mathematical thinking and intentionally tackle problems.

Analyzing incorrect worked examples is especially beneficial for helping students develop a conceptual understanding of mathematical processes.

As students walk through stations working in small groups, the social and physical nature of the learning supports deeper understanding.

Adding motions to complement learning activates more cognitive processes for recall and understanding.

In guided inquiry, teachers help students use their own language for constructing knowledge by active listening and questioning.

Spending time with new content helps move concepts and ideas into Long-term Memory.

Learning about students' cultures and connecting them to instructional practices helps all students feel like valued members of the community.

Practicing until achieving several error-free attempts is critical for retention.

As students work with and process information by discussing, organizing, and sharing it together, they deepen their understanding.

Math centers support learner interests and promote the development of more complex math skills and social interactions.

Math games allow students to practice many math skills in a fun, applied context.

Rhyming, alliteration, and other sound devices reinforce math skills development by activating the mental processes that promote memory.

When students have meaningful conversations about math and use math vocabulary, they develop the thinking, questioning, and explanation skills needed to master mathematical concepts.

Mnemonic devices help students remember mathematical concepts and steps of math and classroom processes.

Multiple tables and chairs on wheels allow for setting up the classroom to support the desired learning outcomes of each activity.

By talking through their thinking at each step of a process, teachers can model what learning looks like.

Teachers sharing math-to-self, math-to-math, and math-to-world connections models this schema building.

Brain breaks that include movement allow learners to refresh their thinking and focus on learning new information.

Instruction in multiple formats allows students to activate different cognitive skills to understand and remember the steps they are to take in their math work.

Multiple display spaces help develop oral language skills as well as Social Awareness & Relationship Skills by allowing groups to share information easily as they work.

Visualizing how ideas fit together helps students construct meaning and strengthens recall.

Providing physical and virtual representations of numbers and math concepts helps activate mental processes.

Easy access to seeing the relationships between numbers promotes Number Sense as students see these connections repeatedly.

Visual representations help students understand what a number represents as well as recognize relationships between numbers.

Multiple writing surfaces promote collaboration by allowing groups to share information easily as they work.

Connecting information to music and dance moves enhances Short-term and Long-term Memory by drawing on auditory processes and the cognitive benefits of physical activity.

Having students teach their knowledge, skills, and understanding to their classmates strengthens learning.

Research shows physical activity improves focus and creativity.

When teachers connect math to the students' world, students see how math is relevant and applicable to their daily lives.

Students deepen their understanding and gain confidence in their learning when they explain to and receive feedback from others.

Providing space and time for students to reflect is critical for moving what they have learned into Long-term Memory.

Response devices boost engagement by encouraging all students to answer every question.

Children's literature can be a welcoming way to help students learn math vocabulary and concepts.

When students engage in a dialogue with themselves, they are able to orient, organize, and focus their thinking.

When students monitor their comprehension, behavior, or use of strategies, they build their Metacognition.

Sentence frames or stems can serve as language support to enrich students' participation in academic discussions.

When students create their own number and word problems, they connect math concepts to their background knowledge and lived experiences.

Transforming written text into audio activates different parts of the brain to support learning.

When students explain their thinking process aloud with guidance in response to questions or prompts, they recognize the strategies they use and solidify their understanding.

Students deepen their math understanding as they use and hear others use specific math language in informal ways.

Tossing a ball, beanbag, dice, or other small object activates physical focus in support of mental focus.

Having students verbally repeat information such as instructions ensures they have heard and supports remembering.

Visual supports, like text magnification, colored overlays, and guided reading strip, help students focus and properly track as they read.

Wait time, or think time, of three or more seconds after posing a question increases how many students volunteer and the length and accuracy of their responses.

A word wall helps build the Math Communication and vocabulary skills that are necessary for problem solving.

Analyzing and discussing solved problems helps students develop a deeper understanding of abstract mathematical processes.

Writing that encourages students to articulate their understanding of math concepts or explain math ideas helps deepen students' mathematical understanding.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Are you sure you want to delete this Workspace?

Enter the email address of the person you want to share with. This person will be granted access to this workspace and will be able to view and edit it.

Create a new Workspace for your product or project.

Item successfully added to workspace!

Issue adding item to workspace. Please refresh the page and try again.